ing on the functionality provided by the wireless device 102, it may be referred to as a data messaging device, a two-way pager, a cellular telephone with data messaging capabilities, a wireless Internet appliance, a data communication device (with or without telephony capabilities), or a portable media or music player. The wireless device 102 may communicate with any one of a plurality of fixed transceiver stations within its geographic coverage area.

[0018] The wireless device 102 may incorporate a communication subsystem 112, which includes a receiver 114, a transmitter 116, and associated components, such as one or more antenna elements 118 and 120, local oscillators (LOs) 122, and a processing module such as a digital signal processor (DSP) 124. In one embodiment, the antenna elements 118 and 120 may be embedded or internal to the wireless device 102. As will be apparent to those skilled in the field of communications, the particular design of the communication subsystem 112 depends on the wireless network 104 in which the wireless device 102 is intended to operate.

[0019] The wireless device 102 may send and receive communication signals over the wireless network 104 after the required network registration or activation procedures have been completed. Signals received by the antenna 118 through the wireless network 104 are input to the receiver 114, which may perform such common receiver functions as signal amplification, frequency down conversion, filtering, channel selection, etc., as well as analog-to-digital (A/D) conversion. A/D conversion of a received signal allows more complex communication functions such as demodulation and decoding to be performed in the DSP 124. In a similar manner, signals to be transmitted are processed, including modulation and encoding, for example, by the DSP 124. These DSPprocessed signals are input to the transmitter 116 for digitalto-analog (D/A) conversion, frequency up conversion, filtering, amplification, and transmission to the wireless network 104 via the antenna 120. The DSP 124 not only processes communication signals, but also provides for receiver and transmitter control. For example, the gains applied to communication signals in the receiver 114 and the transmitter 116 may be adaptively controlled through automatic gain control algorithms implemented in the DSP 124.

[0020] Network access is associated with a subscriber or user of the wireless device 102 via a memory module, such as a memory module 130, which may be a Subscriber Identity Module (SIM) card for use in a GSM network or a USIM card for use in a UMTS. The SIM card is inserted in or connected to an interface 132 of the wireless device 102 in order to operate in conjunction with the wireless network 104. Alternatively, the wireless device 102 may have an integrated identity module for use with systems such as Code Division Multiple Access (CDMA) systems.

[0021] The wireless device 102 also includes a battery interface 136 for receiving one or more rechargeable batteries 138. The battery 138 provides electrical power to at least some of the electrical circuitry in the wireless device 102, and the battery interface 136 provides a mechanical and electrical connection for the battery 138. The battery interface 136 is coupled to a regulator (not shown) which provides power V+ to the circuitry of the wireless device 102.

[0022] The wireless device 102 includes a microprocessor 140 which controls the overall operation of the wireless device 102. Communication functions, including at least data and voice communications, are performed through the communication subsystem 112. The microprocessor 140 also

interacts with additional device subsystems such as a display 142, a flash memory 144, a random access memory (RAM) 146, a read-only memory (ROM) 148, auxiliary input/output (I/O) subsystems 150, a Universal Serial Bus (USB) port 152, a keyboard or keypad 154, a speaker or audio port 156 for connecting to, for example a set of headphones, a microphone 158, a navigation input device 160 such as a clickable trackball, a short-range communications subsystem 162, and any other device subsystems generally designated as 164. Some of the subsystems shown in FIG. 1 perform communicationrelated functions, whereas other subsystems may provide "resident" or on-device functions. Notably, some subsystems, such as the keyboard 154, the display 142, and the navigation input device 160, for example, may be used for both communication-related functions, such as entering a text message for transmission over the wireless network 104, and executing device-resident functions such as a calculator or task list. In one example, the keyboard 154 and the display 142 may be implemented as an integrated touch screen device where a user touches the touch screen display 142 to provide input for the microprocessor 140 in response to options shown on the display 142. Operating system software used by the microprocessor 140 is preferably stored in a persistent store such as the flash memory 144, which may alternatively be the ROM 148 or similar storage element. Those skilled in the art will appreciate that the operating system, specific device applications, or parts thereof, may be temporarily loaded into a volatile store such as the RAM 146.

[0023] The microprocessor 140, in addition to its operating system functions, enables execution of software applications on the wireless device 102. A predetermined set of applications that control basic device operations, including data and voice communication applications, will normally be installed on the wireless device 102 during or after manufacture. The wireless device 102 may include a personal information manager (PIM) application having the ability to organize and manage data items relating to a user such as, but not limited to, instant messaging, email, calendar events, voice mails, appointments, and task items. One or more memory stores may be available on the wireless device 102 to facilitate storage of information, such as the flash memory 144, the RAM 146, the ROM 148, the memory module 130, or other types of memory storage devices such as external hard drives, flash drives, or FLASH memory cards represented by the other device subsystems 164, such as Secure Digital (SD) cards, mini SD cards, micro SD cards, etc.

[0024] The PIM and/or media applications have the ability to send and receive data items via either the wireless network 104 or a link to a computer system. The link to the computer system may be via the serial port 152 or the short-range communications subsystem 162. Additional applications may also be loaded onto the wireless device 102 through the wireless network 104, the auxiliary I/O subsystem 150, the serial port 152, the short-range communications subsystem 162, or any other suitable subsystem 164, and installed by a user in the RAM 146 or a non-volatile store such as the ROM 148 for execution by the microprocessor 140. Such flexibility in application installation increases the functionality of the wireless device 102 and may provide enhanced on-device functions, communication-related functions, or both. For example, secure communication applications may enable electronic commerce functions and other such financial transactions to be performed using the wireless device 102.